CloudMap: A Cloud-Based Pipeline for Analysis of Mutant Genome Sequences

Gregory Minevich,*^{,1} **Danny S. Park,* Daniel Blankenberg,**[†] **Richard J. Poole,***^{,1,2} **and Oliver Hobert***,¹ *Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, and [†]Center for Comparative Genomics and Bioinformatics, Penn State University, University Park, Pennsylvania 16802

Genetics, December 2012

Speakers: Gregory Minevich (Hobert lab, Columbia University) Richard Poole (Welcome Trust Fellow UCL) •45 minute talk

•15 minutes for questions

•Greg & Rich available for detailed discussion the remainder of the meeting

- 1. What problems does CloudMap address?
- 2. Choosing the right cross for your experiment
- 3. Navigating within Galaxy
- 4. Support (website & video user guides)
- 5. Galaxy hosting options

Sequencing costs are dropping faster than you think

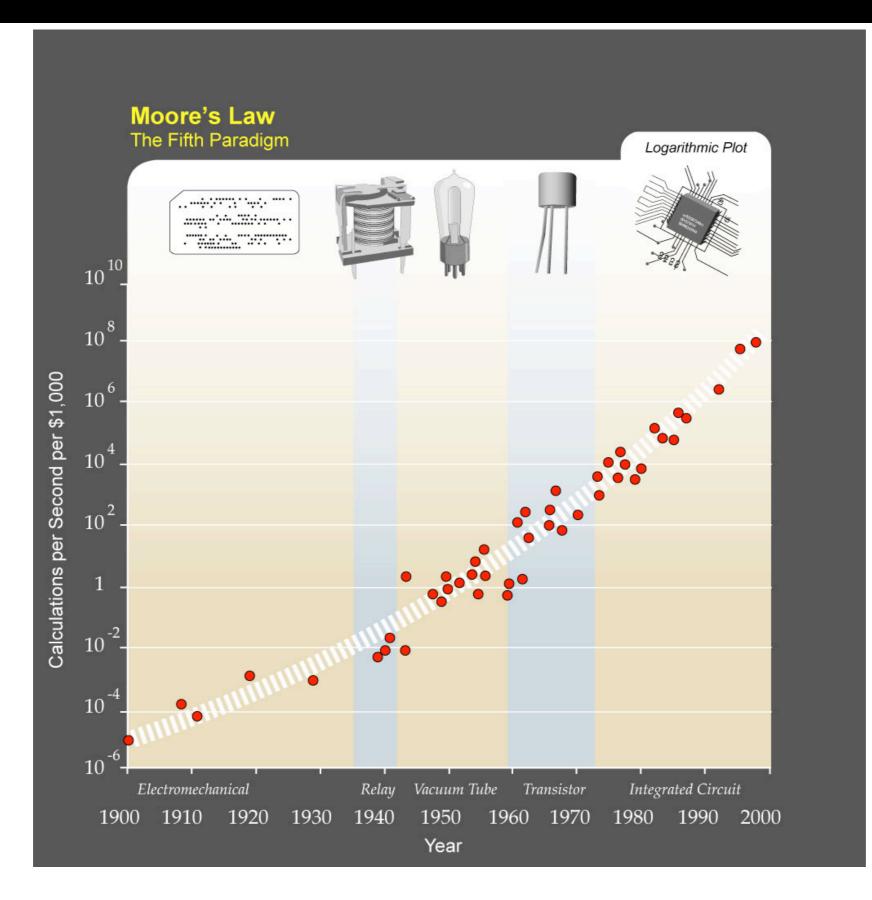
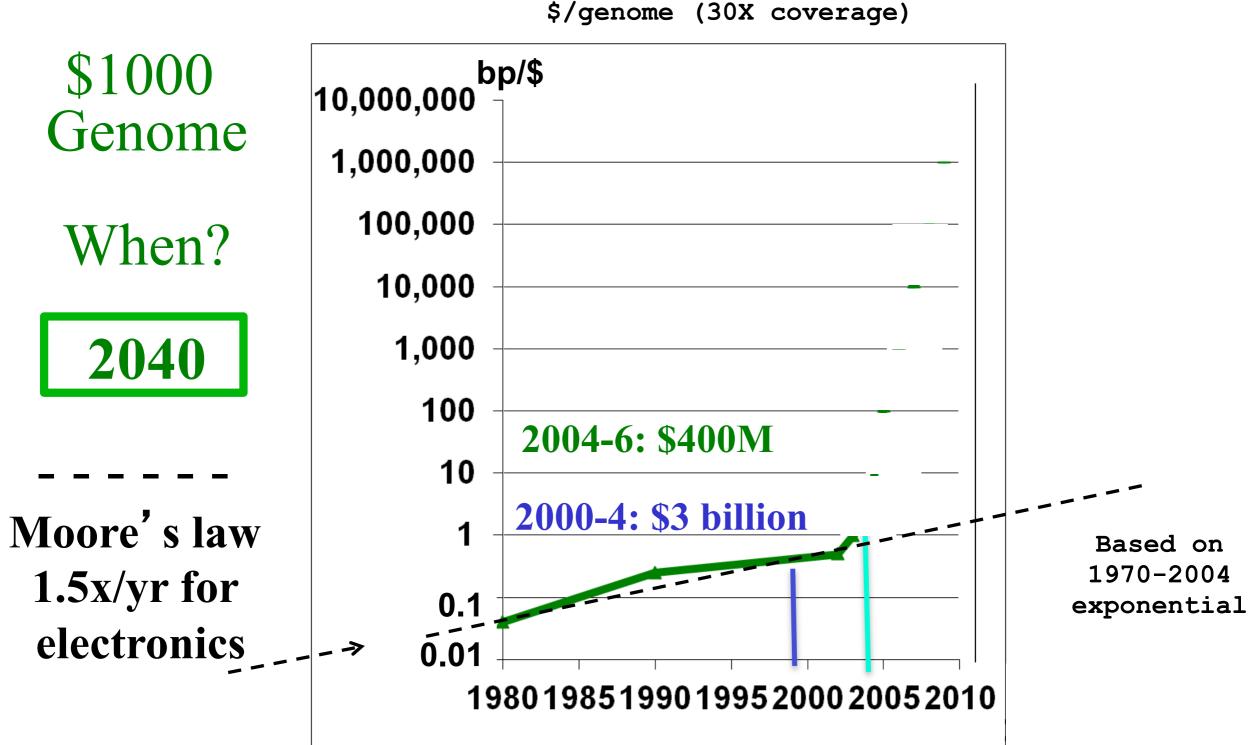
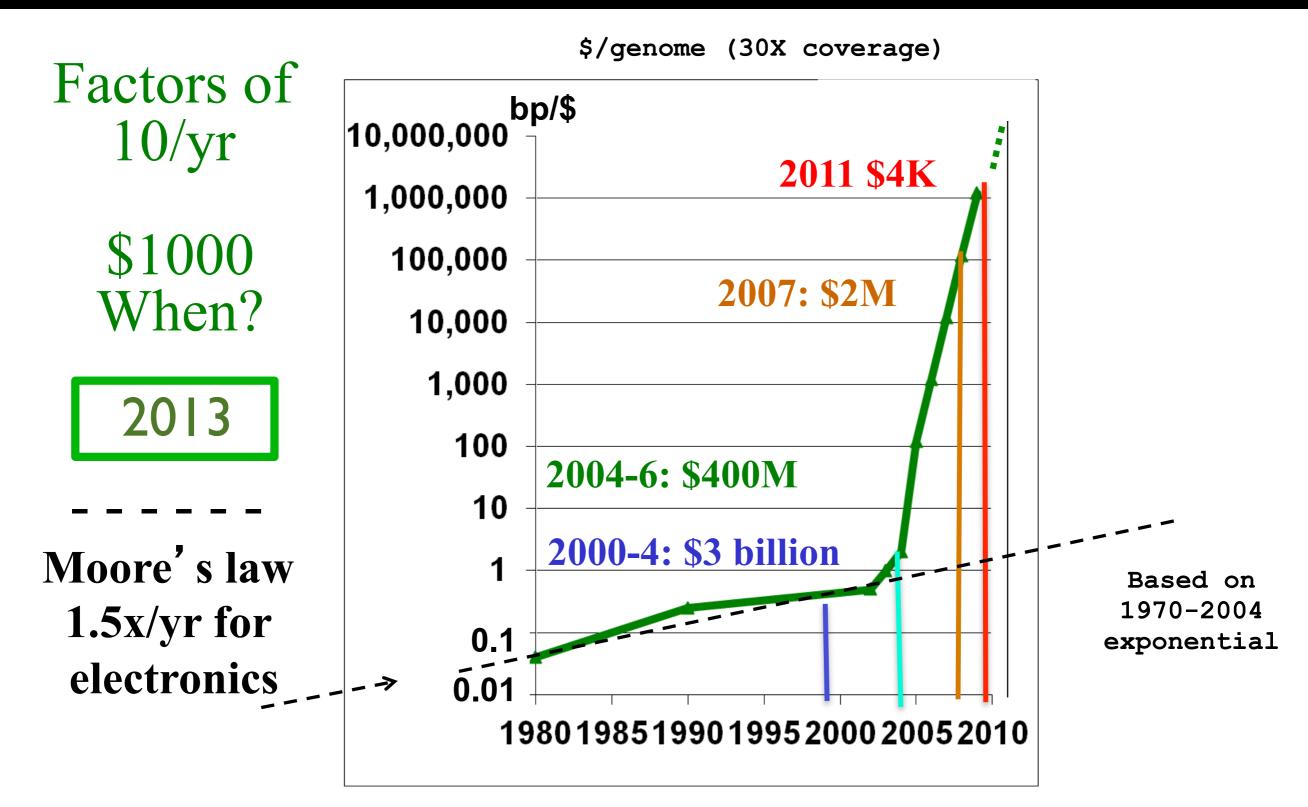




Image: Wikipedia

Sequencing costs are dropping faster than you think

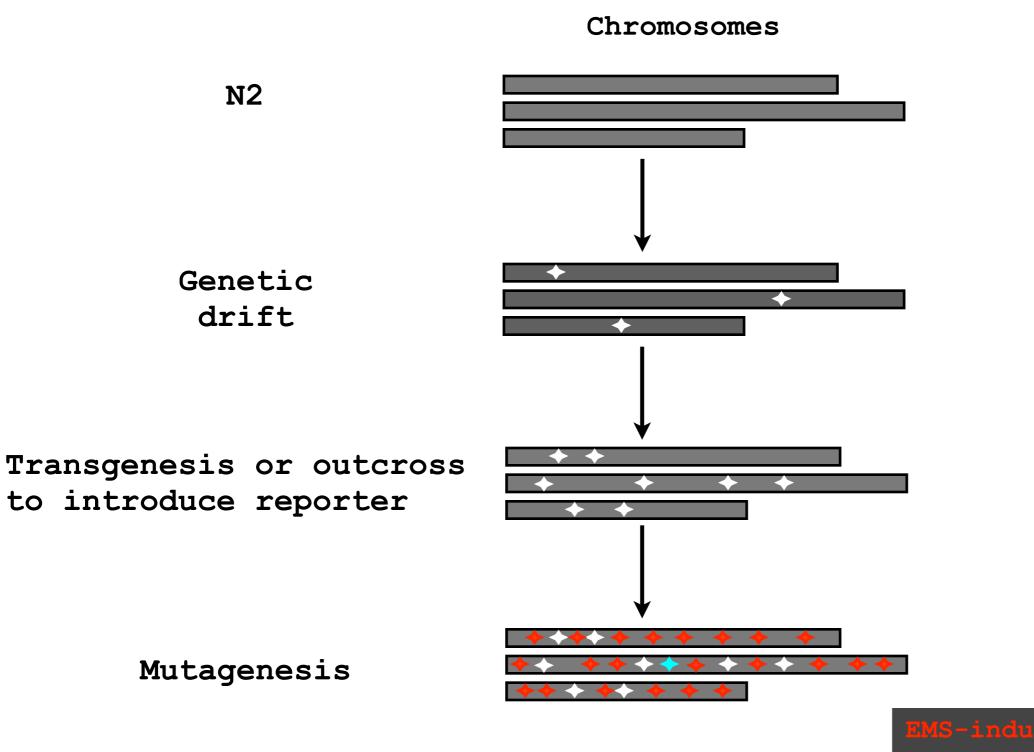
(sequencing bp)/(\$) for whole genome sequencing is advancing faster than Moore's Law

whole genome sequencing is now affordable

- Flood of data requires expensive hardware
- Knowledgeable/expensive bioinformaticians

• Hardware or software may be quickly outdated.

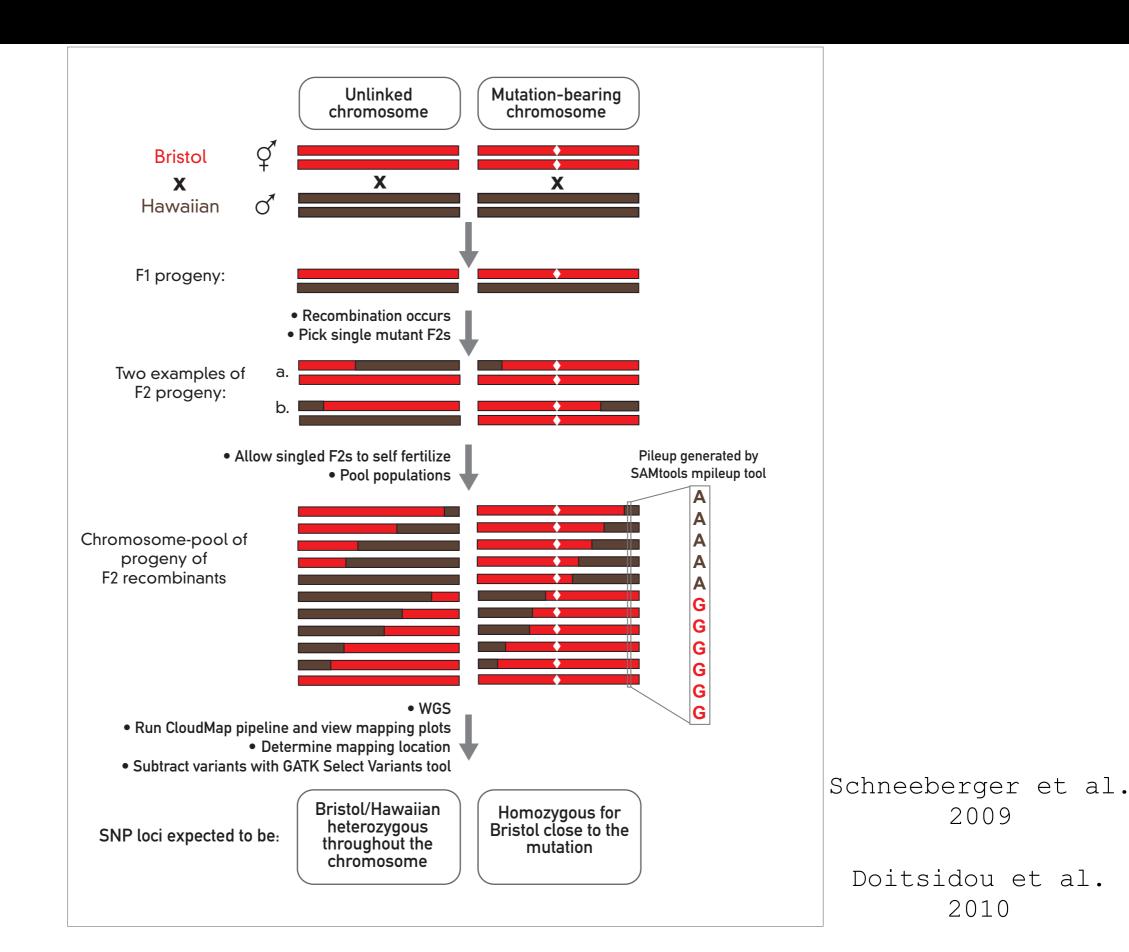
- Cloud-based (Galaxy platform hosted at Penn State)
 - (can also install locally or use Amazon AMIs)
- Modular latest aligners and variant callers
- Automated workflows
- Works with any organism
- Extensive pdf and video user guides
- Free & open source

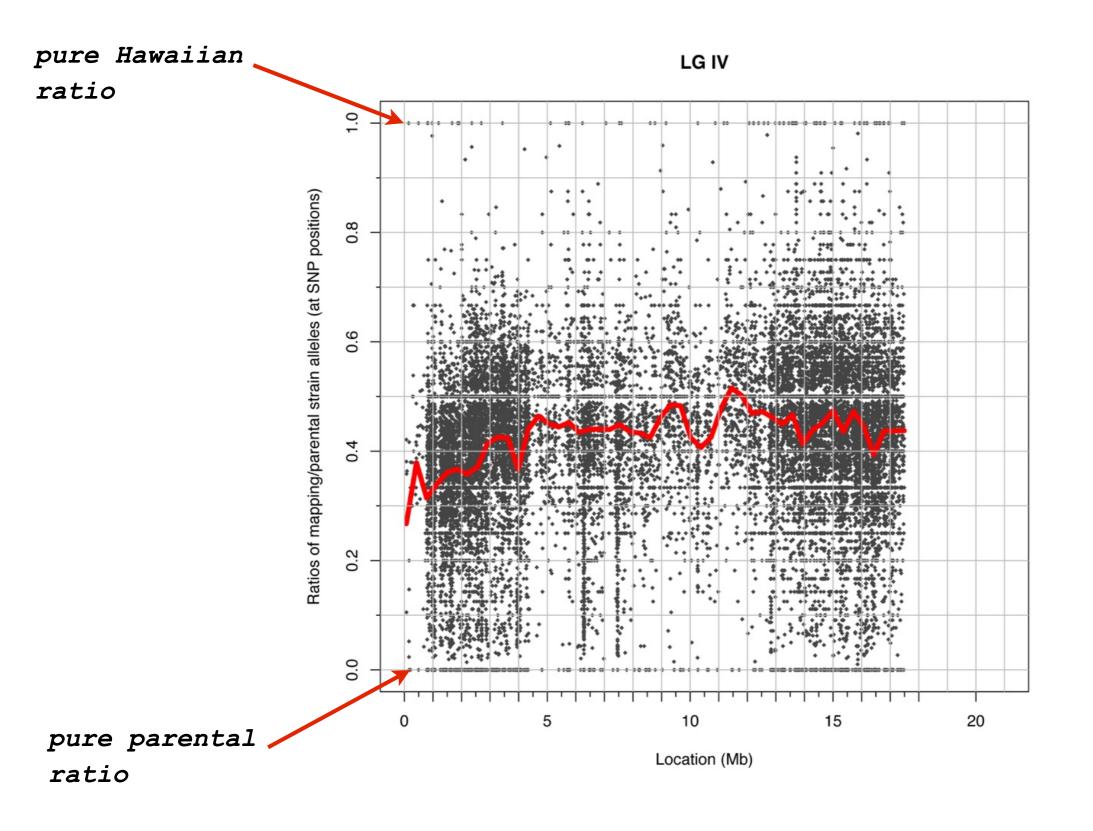

• in silico complementation testing

- in silico complementation testing
- Subtraction of common background variants and deletion analysis

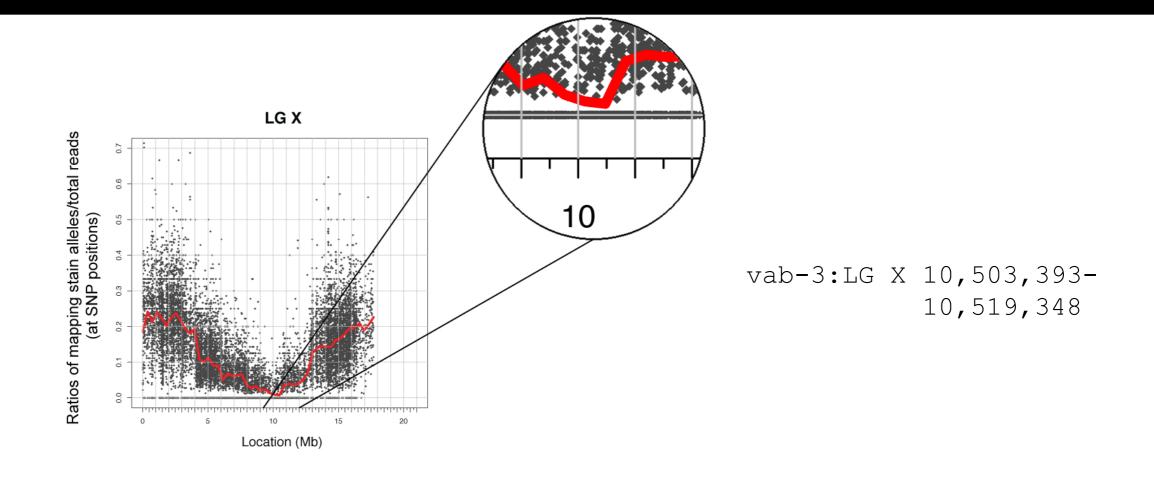
- in silico complementation testing
- Subtraction of common background variants and deletion analysis

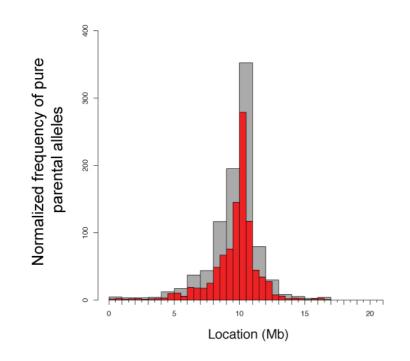
• Query candidate gene lists


2. Choosing the right cross


Phenotype-causing variants

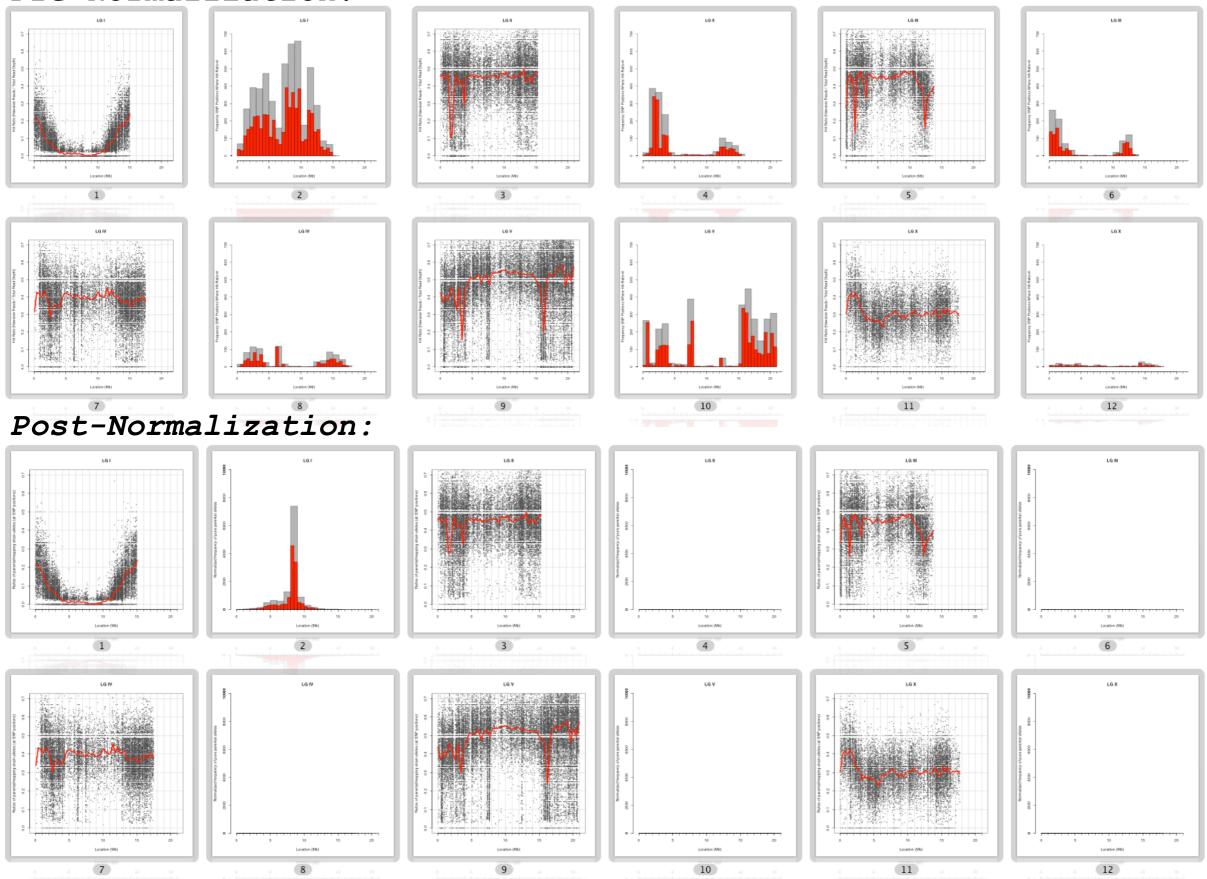
Background variants


Hawaiian Variant Mapping concept



An unlinked chromosome

CloudMap's Hawaiian Variant Mapping plots


1. Amount of possible Hawaiian SNPs in a given Mb bin

2. Amount of pure parental alleles in that given Mb bin

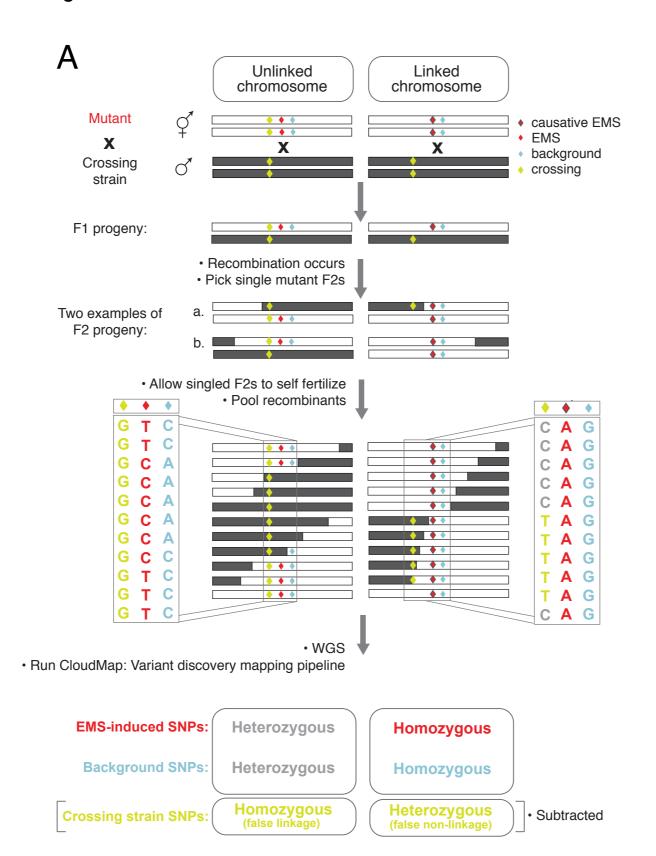
3. Average amount of Hawaiian variants in a given Mb bin per chromosome

HA mapping plots before/after normalization

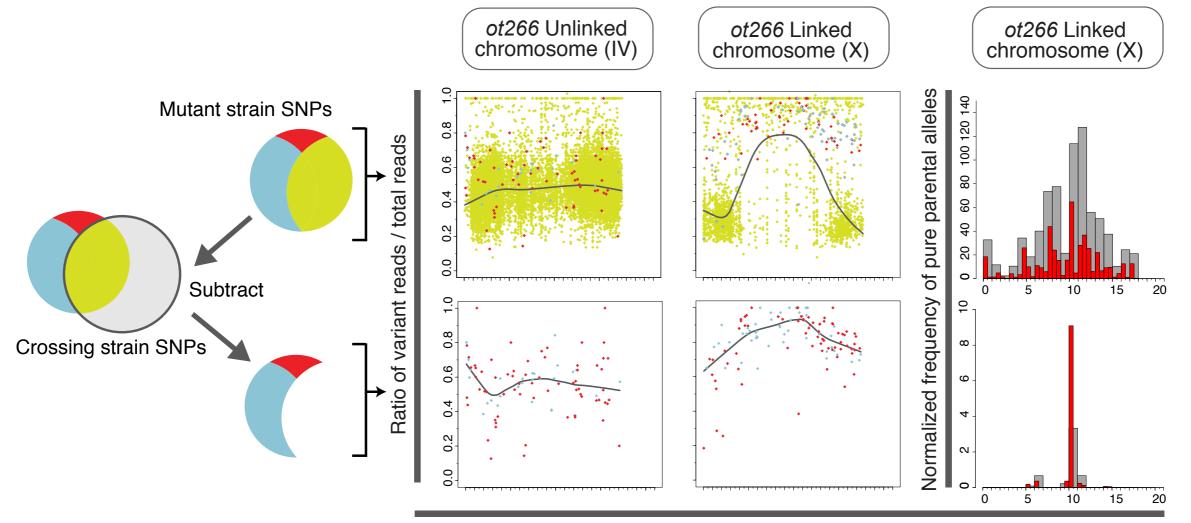
Pre-Normalization:

• VDM allows you to map by crossing to N2 and use the unique variants present in the EMS'd mutant for mapping

• VDM allows you to map by crossing to N2 and use the unique variants present in the EMS'd mutant for mapping


•What if you don't want to introduce ~110k Hawaiian mutations into your mutant strain?

•e.g. behavioral screens


- VDM allows you to map by crossing to N2 and use the unique variants present in the EMS'd mutant for mapping
- •What if you don't want to introduce ~110k Hawaiian mutations into your mutant strain?
 - •e.g. behavioral screens
- •What if you need to recover >1 mutation in your F2 progeny after a cross?
 - •e.g. suppressor screens (CAVEAT: not yet tried in worms, works in Arabidopsis)

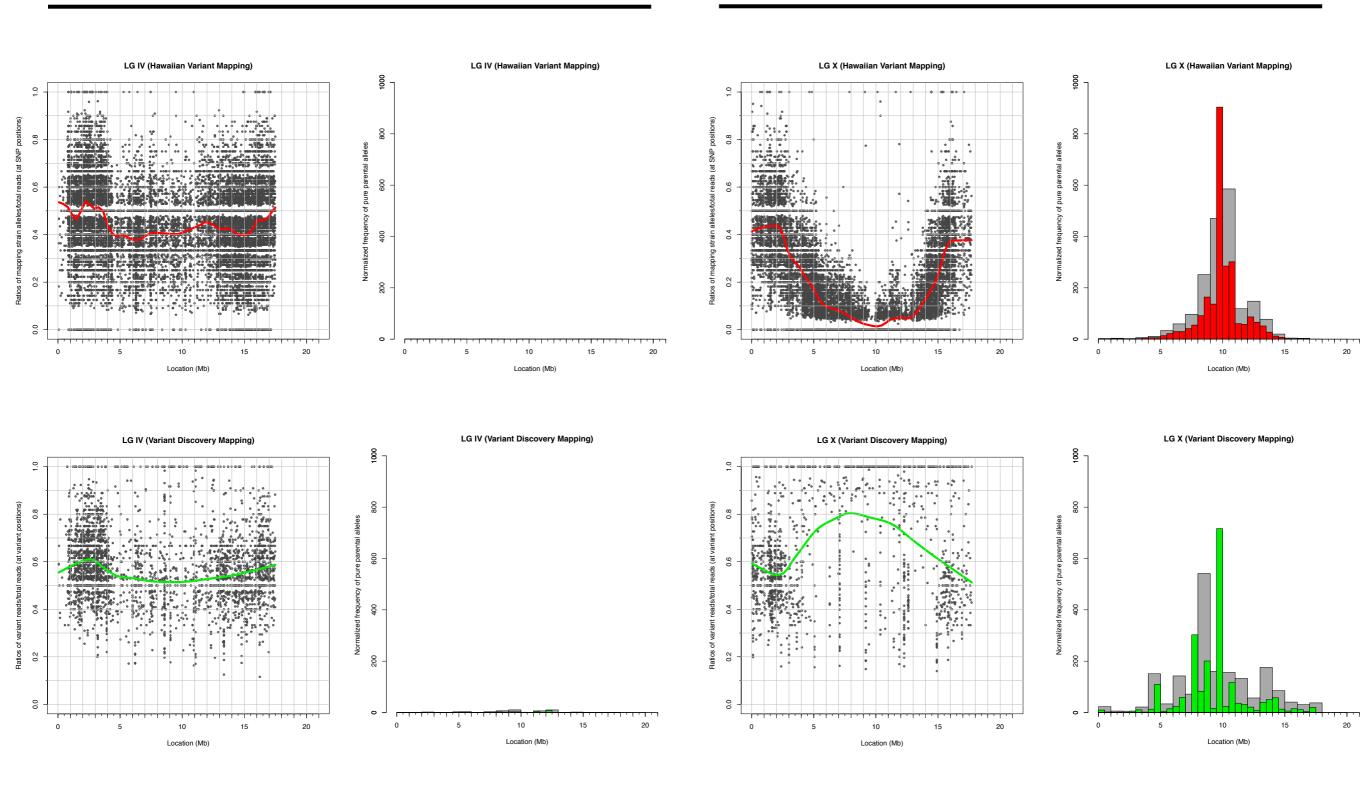
Variant Discovery Mapping

Fig.11

Variant Discovery Mapping

Location (Mb)

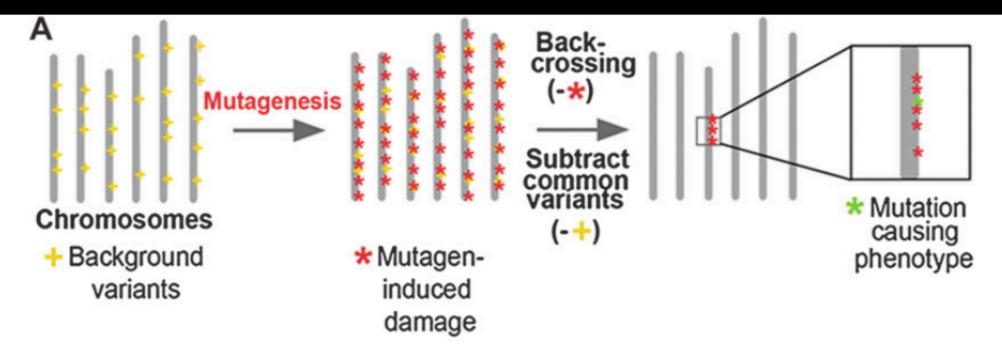
1. Amount of potential parent strain SNPs in a given Mb bin


2. Amount of pure parental alleles in that given Mb bin

3. Average amount of pure parental alleles in a given Mb bin per chromosome

Hawaiian mapped mutants are also plotted with VDM automatically

Unlinked LG

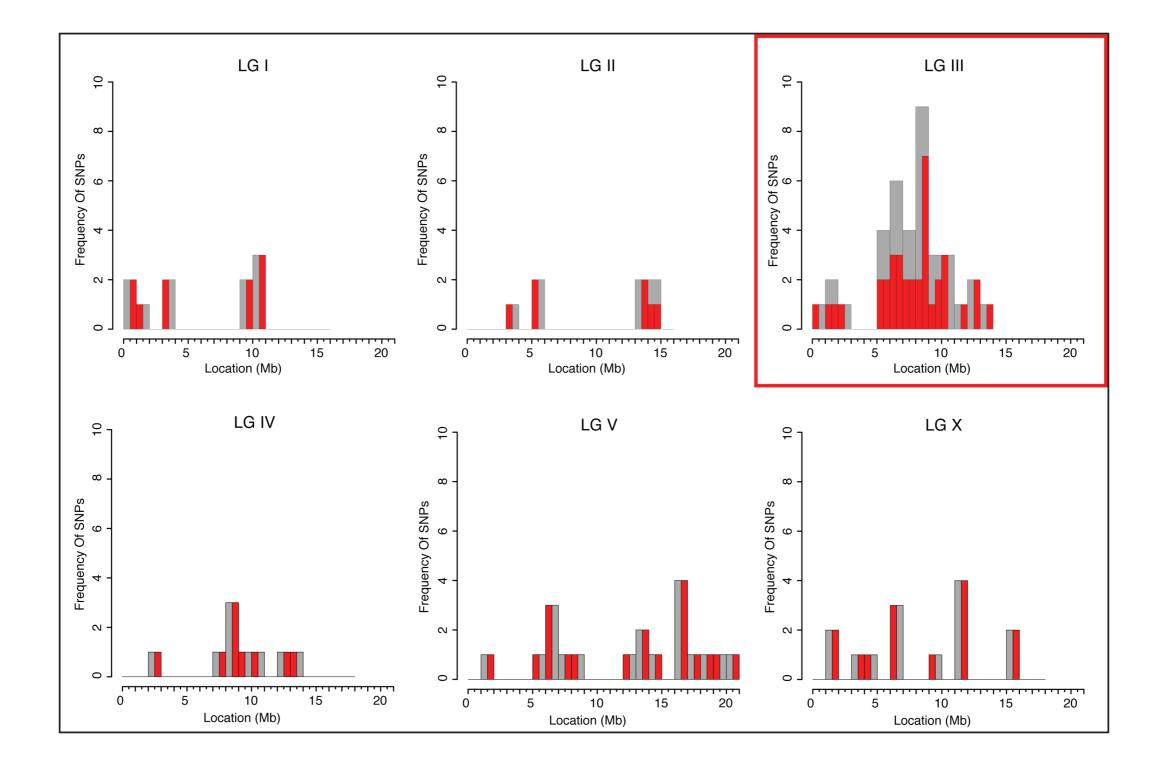

Linked LG

Hawaiian mapping -> ~100,000 variants used for mapping

VDM -> ~1,000 variants used for mapping

EMS Density Mapping

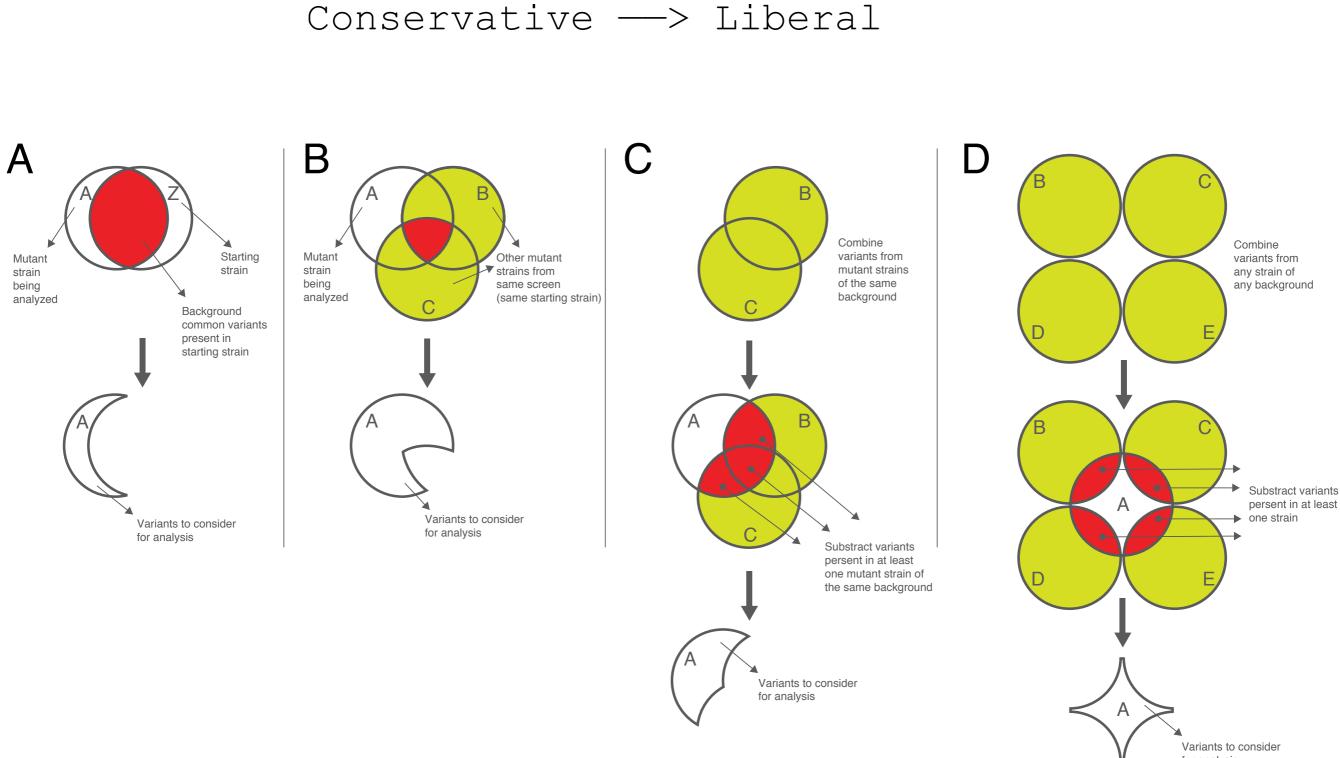
В Total variations/Mb compared to N2 reference genome 60 0



1) Subtraction of common variants

2) Quality filtering

3) Filtering for EMS nucleotide changes


Zuryn et al., 2010

1. Bulk segregant approach gives finer mapping

A. Pooling 50 F2's is conceptually equal to 50 serial backcrosses (same # crossover events that can be used for mapping)

2. Faster to pool 50 F2s derived from same cross (~6 days to pick F2s), than to serially backcross 50 times (50 x \sim 3 = \sim 150 days)

for analysis

• known knowns -> variants in your mapping region

• known knowns -> variants in your mapping region

known unknowns -> uncovered regions in mapping region
 (putative deletions)

• known knowns -> variants in your mapping region

known unknowns -> uncovered regions in mapping region
 (putative deletions)

• unknown unknowns -> you're on your own

Find unique uncovered regions in your sample (putative deletions)

in silico complementation

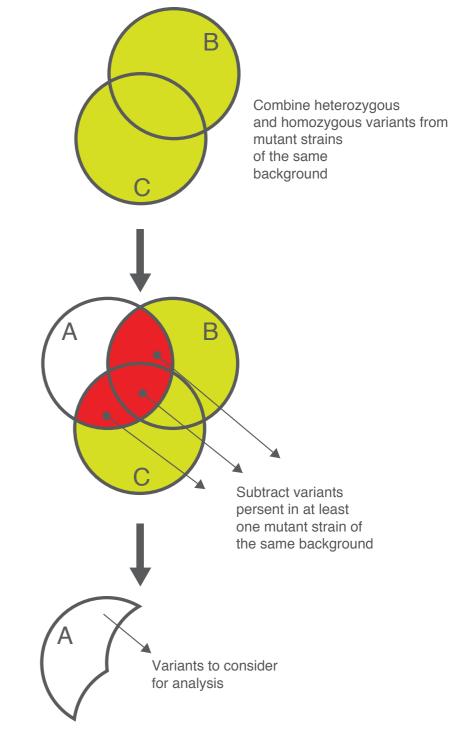
• large genetic screens (especially suppressor screens) yield multiple alleles

in silico complementation

- large genetic screens (especially suppressor screens) yield multiple alleles
- complementation tests are time consuming & not always definitive
 - allelic complementation, non-allelic non-complementation, dominant alleles

in silico complementation

- large genetic screens (especially suppressor screens) yield multiple alleles
- complementation tests are time consuming & not always definitive
 - allelic complementation, non-allelic non-complementation, dominant alleles
- Just sequence many mutants from the same screen and see if you have multiple alleles of the same gene (if cost isn't an issue)

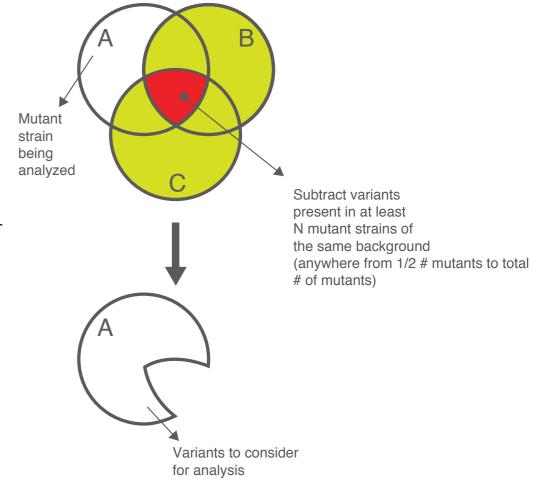

in silico complementation

- large genetic screens (especially suppressor screens) yield multiple alleles
- complementation tests are time consuming & not always definitive
 - allelic complementation, non-allelic non-complementation, dominant alleles
- Just sequence many mutants from the same screen and see if you have multiple alleles of the same gene (if cost isn't an issue)

• Or, easily identify allelic variants in members of the same known complementation group

1st pass - subtract background variants using a liberal subtraction strategy

- Tool returns results where allelic genetic loci contain non-identical hits in more than one sample
- •Can control the upstream/downstream definition of a locus in bp


Caveat:

• Possible that 2 independent alleles of the same locus have the exact same variant — in which case the liberal subtraction would have subtracted that variant.

• Solution - subtract background variants using a conservative subtraction strategy

•Tool returns results where allelic genetic loci contain identical hits in more than one sample

• Downside - many non-phenotype causing variants will remain in the sample (background variants)

Subtract background variants before running the tool

Tool returns instances where multiple alleles are present

A	B	C	D	E	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S
Sample	# Chromo	Position	Reference	Change	Change_type	Homozygous	Quality	Coverage	Warnings	Gene ID	Gene_name	Bio_type	Trancript_ID	Exon_ID	Exon_Rank	Effect	old_AA/new_AA	Old_codon/Ne
mutA	1	10841384	G	С	SNP	Hom	43.12	2		C35E7.2	C35E7.2	protein_coding	C35E7.2a	exon_l_10841103_10841965	1	NON_SYNONYMOUS_CODING	R/T	aGa/aCa
mutB		10841434	Α	С	SNP	Hom	80.72	3		C35E7.2	C35E7.2	protein_coding	C35E7.2a	exon_l_10841103_10841965	1	NON_SYNONYMOUS_CODING	I/L	Att/Ctt
mutB	I	3796684	С	Α	SNP	Hom	349.22	21		Y8A9A.2	Y8A9A.2	protein_coding	Y8A9A.2	exon_II_3796348_3797638	5	NON_SYNONYMOUS_CODING	P/Q	cCa/cAa
mutC	II	3796759	Α	т	SNP	Hom	1208.35	56		Y8A9A.2	Y8A9A.2	protein_coding	Y8A9A.2	exon_II_3796348_3797638	5	NON_SYNONYMOUS_CODING	N/I	aAt/aTt
mutA	X	14766637	G	Α	SNP	Hom	44.89	4		Y16B4A.2	Y16B4A.2	protein_coding	Y16B4A.2	exon_X_14766327_14766971	18	NON_SYNONYMOUS_CODING	S/F	tCc/tTc
mutB	X	14766625	*	-G	DEL	Hom	506.78	21		Y16B4A.2	Y16B4A.2	protein_coding	Y16B4A.2	exon_X_14766327_14766971	18	FRAME_SHIFT: Y16B4A.2		

Variant calling & annotation (GATK & snpEff)

A	В	C	D	E	F	G	Н	J	K	L	M	N	0	Р	Q	R	S	Т	U
# Chromo 💌	Position 💌	Reference 💌	Change	Change_t	Homozyg	Quality 💌	Coverage 💌	Gene_ID	Gene_nar	 Bio_type 	 Trancript 	Exon_ID	Exon_Ran	Effect 🚽	🛙 old_AA/n 💌	Old_codo 🔻	Codon_N	Codon_D	CDS_size 💌
1	9879698	c	т	SNP	Hat	27	63	T23H4.2	nhr 60	protoin co				INTRON			1	1	1122
1	9879698		т	SNP	Het Het	192		T23H4.2	nhr-69 nhr-69		di T23H4.2.2			INTRON					1122
1			і т								di T23H4.2.1								
	9880489		1	SNP	Het	192		T23H4.2	nhr-69		di T23H4.2.2			INTRON					1122
1	9909039		A	SNP	Het	143		F52F12.6			di F52F12.6			INTRON					1620
1	9909895			SNP	Het	162		F52F12.6			di F52F12.6			INTRON					1620
1	9910274		#NAME?		Het	4.42		F52F12.6			di F52F12.6			INTRON					1620
1	9910270		#NAME?		Het	4.42		F52F12.6			di F52F12.6			INTRON					1620
1	9910274		#NAME?		Het	217		F52F12.6			di F52F12.6			INTRON					1620
1	9994773		G	SNP	Het	142		T23D8.8	cfi-1	protein_co	di T23D8.8	exon_l_99	94 7	NON_SYNC		aTc/aCc	451	0	1404
1	10139575		G	SNP	Het	16.1	28							INTERGENI	-				
1	10163982		G	SNP	Het	182		C25A1.2	fkh-10		di C25A1.2.2	exon_l_10	16 3	SYNONYMO	оцн/н	caT/caC	112		
1	10163982		G	SNP	Het	182	125	C25A1.2	fkh-10	protein_co	di C25A1.2.1	exon_l_10	16 3	SYNONYMO	оцн/н	caT/caC	112	1	
1	10194812	G	A	SNP	Het	133	79	C25A1.11		protein_co	di C25A1.11b			INTRON					1356
1	10194812	G	A	SNP	Het	133	79	C25A1.11	aha-1	protein_co	di C25A1.11a			INTRON					1362
I	10195403	A	Т	SNP	Het	222	147	C25A1.11	aha-1	protein_co	di C25A1.11b	exon_l_10	19 5	SYNONYMO	ΟL R/R	cgT/cgA	212	3	1356
I	10195403	A	Т	SNP	Het	222	147	C25A1.11	aha-1	protein_co	di C25A1.11a	exon_l_10	19 5	5 SYNONYMO	ΟL R/R	cgT/cgA	212	3	1362
I	10207646	A	C	SNP	Het	49	480							INTERGENI	с				
I	10209783	A	G	SNP	Hom	27	45							INTERGENI	с				
I	10209806	G	A	SNP	Het	3.55	16							INTERGENI	с				
1	10248569	G	Т	SNP	Het	141	100	ZC247.3	lin-11	protein_co	di ZC247.3			INTRON					1218
I	10248578	С	Т	SNP	Het	39	92	ZC247.3	lin-11	protein_co	di ZC247.3			INTRON					1218
I	10251364	Т	С	SNP	Het	113	115	ZC247.3	lin-11	protein_co	di ZC247.3			INTRON					1218
I	10251848	с	Т	SNP	Het	135	102	ZC247.3	lin-11	protein co	di ZC247.3	exon 10	25 5	5 SYNONYMO	DLS/S	tcC/tcT	202	3	1218
I	10383040	G	A	SNP	Het	40	99	F45H11.4	mgl-2	protein_co	di F45H11.4.2	2		UTR_3_PRI	ME: 590 bases	from CDS			
1	10411503	A	G	SNP	Het	218	77	F25D7.3	blmp-1	protein_co	di F25D7.3b			INTRON					2406
I	10411503	A	G	SNP	Het	218	77	F25D7.3	blmp-1	protein_co	di F25D7.3a			INTRON					2454
1	10477650	С	Т	SNP	Het	120	83	F37D6.2	F37D6.2	protein_co	di F37D6.2a.1			INTRON					1749

List of variants + Annotation information -> List of variant effects

SNPs & indels <=5bp annotated

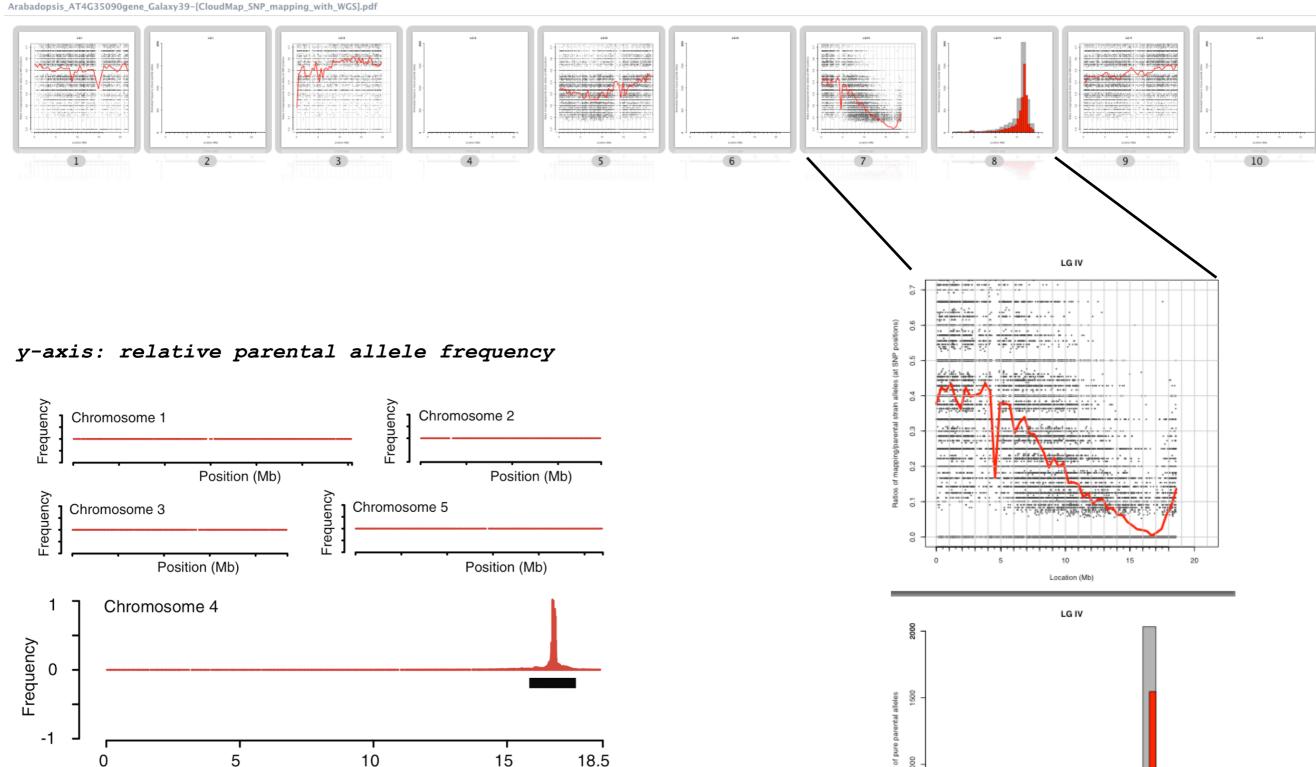
For pooled samples, make sure you check the BAM alignment to determine if a called variant is real before proceeding

CloudMap variant annotation candidate checker

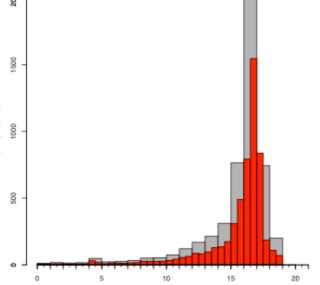
A	В	C	D	E	F	G	H J	K	L	M	N	0	Р	Q	R	S	Т	U	Y Z
Chromo 💌	Position 💌	Reference 💌	Change	Change_t	 Homozyg 	Quality	Coverage 💌 Gene_ID	Gene_nar	Bio_type Trans	ancript_	Exon_ID 💌 🛙	Exon_Ran 💌	Effect -7	old_AA/n	▼ Old_codo ▼	Codon_N 💌 Cod	lon_D 💌 CD	S_size 💌	TFs .7
	9879698	с	Т	SNP	Het	27	62 T23H4.2	nhr-69	protein_codi T2	3H4.2.2			INTRON					1122	ZF - NHR
	9880489	С	Т	SNP	Het	192	109 T23H4.2	nhr-69	protein_codi T2	3H4.2.1			INTRON					1122	ZF - NHR
	9880489	С	Т	SNP	Het	192	109 T23H4.2	nhr-69	protein_codi T2	3H4.2.2			INTRON					1122	ZF - NHR
	9909039	G	A	SNP	Het	143	95 F52F12.6	ztf-11	protein_codi F52	2F12.6			INTRON					1620	ZF - C2HC 2 fingers
	9909895	G	Т	SNP	Het	162	68 F52F12.6	ztf-11	protein_codi F52	2F12.6			INTRON					1620	ZF - C2HC 2 fingers
	9910274	•	#NAME?	INS	Het	4.42	102 F52F12.6	ztf-11	protein_codi F52	2F12.6			INTRON					1620	ZF - C2HC 2 fingers
	9910270	•	#NAME?	INS	Het	4.42	103 F52F12.6	ztf-11	protein_codi F52	2F12.6			INTRON					1620	ZF - C2HC 2 fingers
	9910274	•	#NAME?	INS	Het	217	103 F52F12.6	ztf-11	protein_codi F52	2F12.6			INTRON					1620	ZF - C2HC 2 fingers
	9994773	A	G	SNP	Het	142	73 T23D8.8	cfi-1	protein_codi T2	3D8.8	exon_I_9994	7	NON_SYNON	I/T	aTc/aCc	451	0	1404	ARID/BRIGHT
	10139575	С	G	SNP	Het	16.1	28						INTERGENIC						WH - Fork Head, AT Hook
	10163982	A	G	SNP	Het	182	125 C25A1.2	fkh-10	protein_codi C2	5A1.2.2	exon_l_1016	3	SYNONYMO	H/H	caT/caC	112	1	585	WH - Fork Head
	10163982	A	G	SNP	Het	182	125 C25A1.2	fkh-10	protein_codi C2	5A1.2.1	exon_l_1016	3	SYNONYMO	H/H	caT/caC	112	1	585	WH - Fork Head
	10194812	G	A	SNP	Het	133	79 C25A1.11	aha-1	protein_codi C2	5A1.11b			INTRON					1356	bHLH
	10194812	G	A	SNP	Het	133	79 C25A1.11	aha-1	protein_codi C2	5A1.11a			INTRON					1362	bHLH
	10195403	A	Т	SNP	Het	222	147 C25A1.11	aha-1	protein_codi C2	5A1.11b	exon_l_1019	5	SYNONYMO	R/R	cgT/cgA	212	3	1356	bhlh
	10195403	A	Т	SNP	Het	222	147 C25A1.11	aha-1	protein_codi C2	5A1.11a	exon_l_1019	5	SYNONYMO	R/R	cgT/cgA	212	3	1362	bHLH
	10207646	A	С	SNP	Het	49	480						INTERGENIC						WH - Fork Head, AT Hook
	10209783	A	G	SNP	Hom	27	45						INTERGENIC						WH - Fork Head, AT Hook
	10209806	G	A	SNP	Het	3.55	16						INTERGENIC						WH - Fork Head, AT Hook
	10248569	G	Т	SNP	Het	141	100 ZC247.3	lin-11	protein_codi ZC	247.3			INTRON					1218	HD - LIM
	10248578	С	Т	SNP	Het	39	92 ZC247.3	lin-11	protein_codi ZC	247.3			INTRON					1218	HD - LIM
	10251364	Т	C	SNP	Het	113	115 ZC247.3	lin-11	protein_codi ZC	247.3			INTRON					1218	HD - LIM
	10251848	С	Т	SNP	Het	135	102 ZC247.3	lin-11	protein_codi ZC	247.3	exon_l_1025	5	SYNONYMO	S/S	tcC/tcT	202	3	1218	HD - LIM
	10383040	G	A	SNP	Het	40	99 F45H11.4	mgl-2	protein_codi F4	5H11.4.2			UTR_3_PRIM	1E: 590 bas	es from CDS				bZIP
	10411503	A	G	SNP	Het	218	77 F25D7.3	blmp-1	protein_codi F2	5D7.3b			INTRON					2406	ZF - C2H2 - 4 fingers
	10411503	A	G	SNP	Het	218	77 F25D7.3	blmp-1	protein_codi F2	5D7.3a			INTRON					2454	ZF - C2H2 - 4 fingers
	10477650	С	Т	SNP	Het	120	83 F37D6.2	F37D6.2	protein codi F3	7D6.2a.1			INTRON					1749	ZF - C2H2 - 5 fingers

- 1) Transcription factors
- 2) Transgene silencers
- 3) Genes expressed in the nervous system
- 4) Anything you want. . .

- Clone mutants from mapping crosses
 - 1. Hawaiian Mapping
 - 2. Variant Discovery Mapping
 - 3. EMS Density Mapping


- Clone mutants from mapping crosses
 - 1. Hawaiian Mapping
 - 2. Variant Discovery Mapping
 - 3. EMS Density Mapping
- Find variants unique to your sample by subtracting variants in other strains

- Clone mutants from mapping crosses
 - 1. Hawaiian Mapping
 - 2. Variant Discovery Mapping
 - 3. EMS Density Mapping
- Find variants unique to your sample by subtracting variants in other strains
- Putative deletion analysis


- Clone mutants from mapping crosses
 - 1. Hawaiian Mapping
 - 2. Variant Discovery Mapping
 - 3. EMS Density Mapping
- Find variants unique to your sample by subtracting variants in other strains
- Putative deletion analysis
- in silico complementation testing

- Clone mutants from mapping crosses
 - 1. Hawaiian Mapping
 - 2. Variant Discovery Mapping
 - 3. EMS Density Mapping
- Find variants unique to your sample by subtracting variants in other strains
- Putative deletion analysis
- in silico complementation testing
- Query candidate gene lists

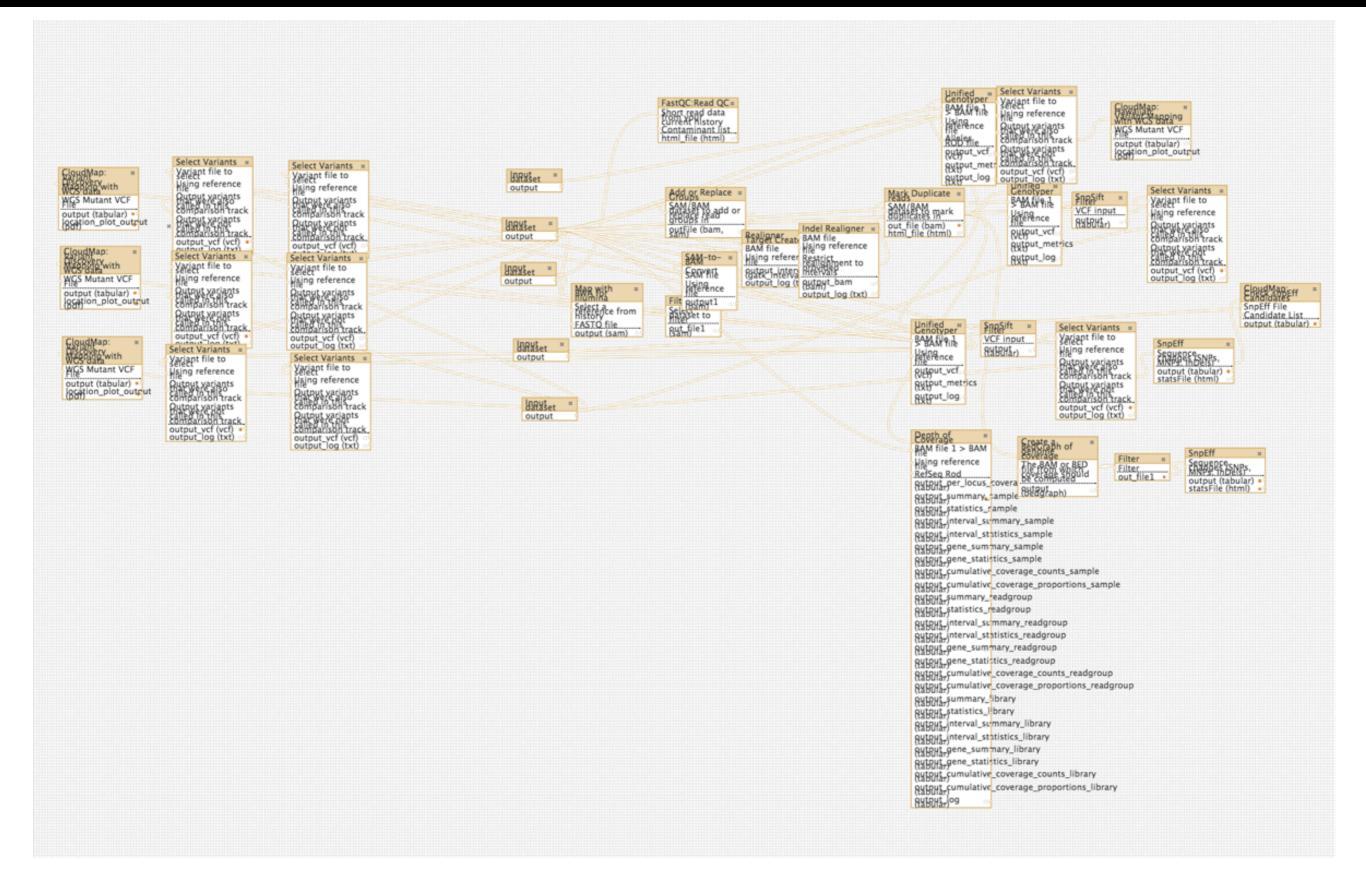
Tested with Arabidopsis, Brachypodium, zebrafish

ş

3) Navigating within Galaxy

← → C Attps://main.g2.bx.psu.edu/root

For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now.


Galaxy	Analyze Data Workflow Shared Data - Visualization - Cloud - Help - User -	Usin	ng 86%
Tools	CloudMap: Hawaiian Variant Mapping with WGS data (version 1.0.0)	History	00
Phenotype Association EMBOSS	Please select the species:	CloudMap_ot266_Proof_of_Principle (with hidden data) 12.6 GB	0 🖻
NGS TOOLBOX BETA NGS: QC and manipulation NGS: Mapping NGS: SAM Tools	C. elegans * WGS Mutant VCF File: 43: Heterozygous andubtraction) * WGS Mutant VCF file from pooled F2 mutants that have been crossed to a mapping strain. The VCF should contain data from only mapping strain (e.g. Hawaiian) SNP positions	49: Homozygous variants annotated (snpEff) (for cloning mutant under consideration, Hawaiian unfiltered variants subtrac lower quality variants included, candidate genes annotated with CloudMap)	● Ø X acted,
NGS: GATK Tools (beta) NGS: Variant Detection	Loess span: 0.1	48: SnpEff on data 41	• 0 %
<u>CloudMap: in silico</u> <u>complementation</u> Perform in silico	Parameter that controls the degree of data smoothing.	45: Uncovered regions annotated (snpEff)	• / %
complementation analysis on multiple tabular snpEff output files	Y-axis upper limit for scatter plot: 0.7	43: Heterozygous and Homozygous variants (higher quality, coverage > 3, Hawaiian unfiltered variants subtracted for submis databases or for variant subtraction)	● Ø X ission to
 <u>CloudMap: Variant Discovery</u> <u>Mapping with WGS data</u> Map a mutation using in silico bulk segregant linkage analysis using variants that are already present in the muthat strip of interest 	Y-axis upper limit for frequency plot: 500 Color for data points:		∞0% uality
the mutant strain of interest (rather than those introduced by a cross to a polymorphic strain).	gray27 See below for list of supported colors Color for loess regression line:	40: CloudMap: Hawaiian Variant Mapping with WGS data on data 34	• 0 2 %
<u>FreeBayes</u> – Bayesian genetic variant detector	red See below for list of supported colors	39: CloudMap: Hawaiian Variant Mapping with WGS data on data 34	• • • ×
 <u>CloudMap: Hawaiian Variant</u> <u>Mapping with WGS data</u> Map a mutation by plotting 	Standardize X-axis:	38: Uncovered regions (BED file for downstream subtractions and snpEff annotation)	∞ / X
recombination frequencies resulting from crossing to a highly polymorphic strain	Scatter plots and frequency plots from separate chromosomes will have uniform X-axis spacing for comparison Normalize frequency plots:	29: Depth of Coverage on data 5 and data 16 (output summary sample)	• 0 x
 <u>CloudMap: EMS Variant Density</u> <u>Mapping Map a mutation by</u> 	Frequency plots of pure parental allele counts will be normalized according to the equation in Fig.7B of the CloudMap paper	16: Alignment file (BAM)	• 0 %
linkage to regions of high mutation density using WGS data	Execute	9: FASTQ quality statistics (box plot)	• 0 %
NGS: Indel Analysis		5: WS220.64_chr.fa	• 0 %
NGS: Peak Calling NGS: RNA Analysis	What it does: This tool is part of the CloudMap pipeline for analysis of mutant genome sequences. For further details, please see Gregory Minevich, Danny S. Park, Daniel Blankenberg, Richard J. Poole and Oliver	4: ot266_ProofOfPrinciple_Small.fastqsanger	• 0 %
NGS: Picard (beta)	Hobert. CloudMap: A Cloud-based Pipeline for Analysis of Mutant Genome Sequences. (Genetics 2012 In Press)	3: HA_SNPS_Unfiltered_112061Variants_WS220.vcf	• 0 %
BEDTools snpEff	CloudMap workflows, shared histories and reference datasets are available at the <u>CloudMap Galaxy page</u>	2: HA_SNPs_Filtered_103346Variants_WS220.vcf	• 0 %
RGENETICS	This tool improves upon, and automates, the method described in Doitsidou et al., PLoS One 2010 for mapping causal mutations using whole genome sequencing data. Sample CloudMap output for a linked chromosome:	1: CloudMap_TranscriptionFactors_wTF2.2.txt	• / %
SNP/WGA: Data; Filters SNP/WGA: QC; LD; Plots SNP/WGA: Statistical Models			
Workflows All workflows			
<		1	>

☆ 1

Automated analyses w/ CloudMap workflows

– Galaxy	Analyze Data Workflow Shared Data - Visualization - Cloud - Help - User -		ing 86%
Tools	Successfully ran workflow "imported: CloudMap Variant Discovery Mapping (Subtracts Crossing Strain from Input List of Variants run w/ GATK	History	0 0
search tools	Unified Genotyper default settings)". The following datasets have been added to the queue: 1: WS220.64_chr.fa	VDM_example 76.9 MB	Ø 🖻
Get Data	3: hu97HA_Heterozygous and Homozygous variants (lower quality, for cloning)	70.9 MB	
<u>Send Data</u> ENCODE Tools	2: HA_SNPS_Unfiltered_112061Variants_WS220.64_chr.vcf	39: CloudMap: Variant Discovery Mapping with WGS data on data 32	• / %
Lift-Over	22: Mutant Strain SNPs QUAL100 VCF	38: Mutant Strain SNPs QUAL300 minus crossing+background strain VDM	4 @ 0 %
Text Manipulation	23: Select Variants on data 1 and data 3 (log)	plot	
Convert Formats	24: Mutant Strain SNPs QUAL200 VCF	37: CloudMap: Variant Discovery Mapping with WGS data on data 30	• / X
FASTA manipulation	25: Select Variants on data 1 and data 3 (log)		
Filter and Sort	26: Mutant Strain SNPs QUAL300 VCF	36: Mutant Strain SNPs QUAL200 minus crossing+background strain VDM plot	4 ● 0 ☆
Join, Subtract and Group	27: Select Variants on data 1 and data 3 (log)		
Extract Features Fetch Sequences	28: Mutant Strain SNPs QUAL100 minus crossing strain SNPs VCF	35: CloudMap: Variant Discovery Mapping with WGS data on data 28	@ / X
Fetch Alignments	29: Select Variants on data 1, data 22, and data 2 (log)	34: Mutant Strain SNPs QUAL100 minus crossing+background strain VDM	4 @ 0 %
Get Genomic Scores	30: Mutant Strain SNPs QUAL200 minus crossing strain SNPs VCF	plot	
Operate on Genomic Intervals	31: Select Variants on data 1, data 24, and data 2 (log)	33: Select Variants on data 1, data 26, and data 2 (log)	@ / X
<u>Statistics</u>	32: Mutant Strain SNPs QUAL300 minus crossing strain SNPs VCF		
Graph/Display Data	33: Select Variants on data 1, data 26, and data 2 (log)	32: Mutant Strain SNPs QUAL300 minus crossing strain SNPs VCF	• 0 %
Regional Variation	34: Mutant Strain SNPs QUAL100 minus crossing+background strain VDM plot	31: Select Variants on data 1, data 24, and data 2 (log)	• / ×
<u>Multiple regression</u> <u>Multivariate Analysis</u>	35: CloudMap: Variant Discovery Mapping with WGS data on data 28	30: Mutant Strain SNPs QUAL200 minus crossing strain SNPs VCF	@ / X
Evolution	36: Mutant Strain SNPs QUAL200 minus crossing+background strain VDM plot	So. Mutant Strain SNPS QUAL200 minus crossing strain SNPS VCP	@ / X
Motif Tools	37: CloudMap: Variant Discovery Mapping with WGS data on data 30	29: Select Variants on data 1, data 22, and data 2 (log)	• 0 %
Multiple Alignments	38: Mutant Strain SNPs QUAL300 minus crossing+background strain VDM plot	28: Mutant Strain SNPs QUAL100 minus crossing strain SNPs VCF	• / ×
Metagenomic analyses	39: CloudMap: Variant Discovery Mapping with WGS data on data 32		
Genome Diversity		27: Select Variants on data 1 and data 3 (log)	@ / X
Phenotype Association EMBOSS		26: Mutant Strain SNPs QUAL300 VCF	• / %
NGS TOOLBOX BETA		25: Select Variants on data 1 and data 3 (log)	• / %
NGS: QC and manipulation		24: Mutant Strain SNPs QUAL200 VCF	• / ×
NGS: Mapping		22: Select Variants on data 1 and data 2 (loo)	● <i>D</i> ∞
<u>NGS: SAM Tools</u> NGS: GATK Tools (beta)		23: Select Variants on data 1 and data 3 (log)	• / %
NGS: Variant Detection		22: Mutant Strain SNPs QUAL100 VCF	@ / X
<u>NGS: Indel Analysis</u> NGS: Peak Calling		3: hu97HA_Heterozygous and Homozygous variants (lower quality, for cloning)	● / X
NGS: RNA Analysis NGS: Picard (beta)		2: HA SNPS Unfiltered 112061Variants WS220.64 chr.vcf	• 0 %
BEDTools		<u>1: WS220.64_chr.fa</u>	• 1 %

CloudMap workflows can be edited

CloudMap data libraries contain a proof of principle dataset and config files

Data Library "CloudMap"

~		
Name		Message
	CloudMap Candidate Gene - Lists	For CloudMap Check snpEff Candidates tool
	CloudMap_C.elegansGenesWithHumanOrthologs.txt ~	
	CloudMap_ChromatinFactors.txt *	
	CloudMap_TranscriptionFactors_wTF2.2.txt *	
• 🏴	CloudMap EMS Variant Density ~ Mapping	Use this dataset to try out the CloudMap EMS Variant Density Mapping tool
	Zuryn_et_al_2010_mutA(subtracted_mutD).vcf ~	
0 🏴	CloudMap ot266 proof of principle ~ dataset	Use these files to run the CloudMap ot266 proof of principle example
• 1	Hawaiian SNP reference files filtered (WS220.64)	Filtered set of Hawaiian SNP variants (used by CloudMap SNP Mapping with WGS tool)
	HA_SNPs_Filtered_103346Variants_WS220.vcf ~	
• 1	Hawaiian SNP reference files unfiltered - (WS220.64)	Unfiltered set of Hawaiian SNP variants (used by CloudMap SNP Mapping with WGS tool)
	HA_SNPS_Unfiltered_112061Variants_WS220.64_chr.vcf ~	
	ot266_ProofOfPrinciple_Small.fastqsanger =	None
	WS220.64_chr.fa ~	
0 🏴	CloudMap user ~ guides	Detailed guides for using the CloudMap pipeline
	CloudMap_Userguide_11-28-2012_large.pdf ~	
	CloudMap_Userguide_11-28-2012_small.pdf ~	
0 🏴	Hawaiian Variant Mapping with WGS Data Other Species Configuration - Files	Use these files to run Hawaiian Variant Mapping tools with species other than C. elegans or Arabidopsis
	A.thaliana_Hawaiian_Variant_Mapping_config.txt ~	
	C.elegans_Hawaiian_Variant_Mapping_config.txt ~	
	D.rerio_Hawaiian_Variant_Mapping_config.txt ~	
0 🌾	ot260 and ot263 BEDs for uncovered	Use these BED files for the CloudMap ot266 proof of principle for uncovered region subtraction
	ot260_Uncovered_regions.bed ~	
	ot263_Uncovered_regions.bed ~	
	ot266_Uncovered_regions.bed ~	
	ot260 and ot263 VCFs for variant	Use these VCF files for the CloudMap ot266 proof of principle variant subtraction
For	selected datasets: Import to current history 🗘 Go	

FASTQ statistics (FASTQC tool)

Report

Per base sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Sequence Length Distribution

Sequence Duplication Levels

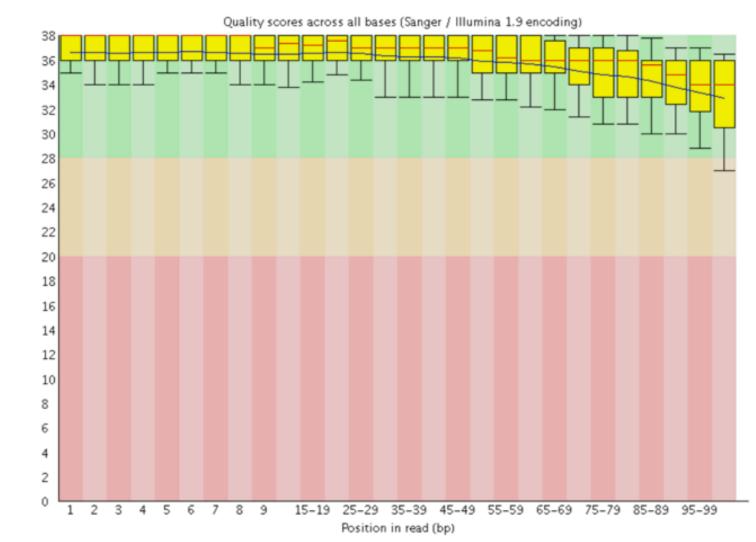
Overrepresented sequences

Per base GC content

Per base N content

Kmer Content

-


Summary

Basic Statistics

Basic Statistics

Measure	Value
Filename	ot266_ProofOfPrinciple_Small.fastqsanger
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	10194621
Filtered Sequences	0
Sequence length	101
%GC	33

Per base sequence quality

Babraham Bioinformatics

FASTQ statistics (FASTQC tool)

Report

Per base sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Sequence Length Distribution

Sequence Duplication Levels

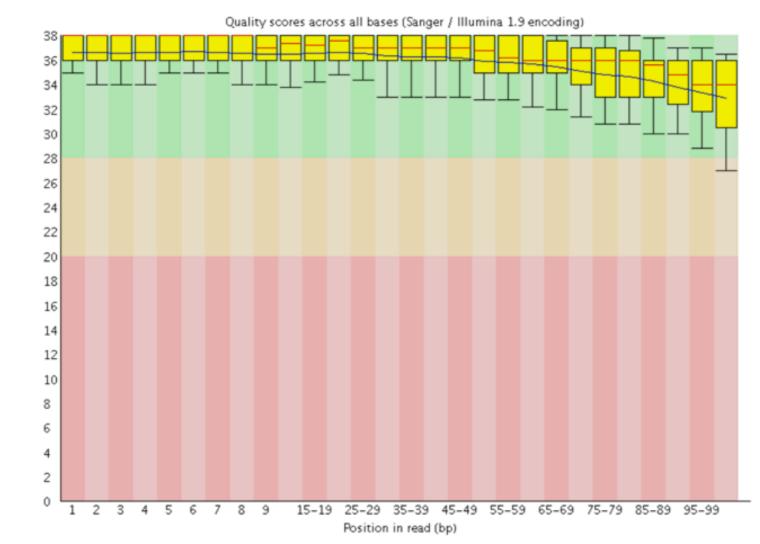
Overrepresented sequences

Per base GC content

Per base N content

Kmer Content

-


Summary

Basic Statistics

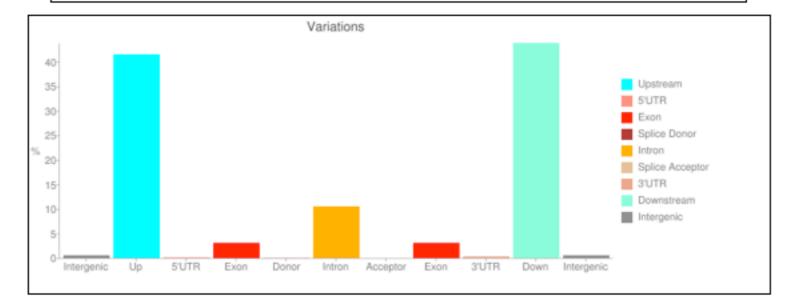
Basic Statistics


Measure	Value
Filename	ot266_ProofOfPrinciple_Small.fastqsanger
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	10194621
Filtered Sequences	0
Sequence length	101
%GC	33

Per base sequence quality

Babraham Bioinformatics

Alignments (BWA, Bowtie, GATK, PICARD)



Variant annotation (snpEff)

Number of effects by impact

Type (alphabetical order)	Count	Percent
HIGH	245	0.774%
LOW	16,895	53.371%
MODERATE	501	1.583%
MODIFIER	14,015	44.273%

Туре			Region		
Type (alphabetical order)	Count	Percent			
CODON_CHANGE_PLUS_CODON_DELETION	1	0.003%			
CODON_CHANGE_PLUS_CODON_INSERTION	1	0.003%			
CODON_DELETION	2	0.006%			
CODON_INSERTION	- 4	0.013%			
DOWNSTREAM	13,868	43.808%	Type (alphabetical order)	Count	Percent
FRAME_SHIFT	211	0.667%	DOWNSTREAM	13,868	43.808%
INTERGENIC	177	0.559%	EXON	983	3.105%
INTRON	3,332	10.526%	INTERGENIC	177	0.559%
NON_SYNONYMOUS_CODING	493	1.557%	INTRON	3,332	10.526%
SPLICE_SITE_ACCEPTOR	6	0.019%	SPLICE_SITE_ACCEPTOR	6	0.019%
SPLICE_SITE_DONOR	9	0.028%	SPLICE_SITE_DONOR	9	
STOP_GAINED	15	0.047%	UPSTREAM	13,134	41.49%
STOP_LOST	4	0.013%	UTR_3_PRIME	104	0.329%
SYNONYMOUS_CODING	250	0.79%	UTR_5_PRIME	43	0.136%
SYNONYMOUS_START	1	0.003%			
SYNONYMOUS_STOP	1	0.003%			
UPSTREAM	13,134	41.49%			
UTR_3_PRIME	104	0.329%			
UTR_5_PRIME	43	0.136%			

Number of effects by type and region

Variant annotation (snpEff)

	Α	С	G	Т
Α	0	17	17	28
С	13	0	11	183
G	172	14	0	20
Т	29	19	10	0

Base changes (SNPs)

Ts/Tv (transitions / transversions)

Note: Only SNPs are used for this statistic.

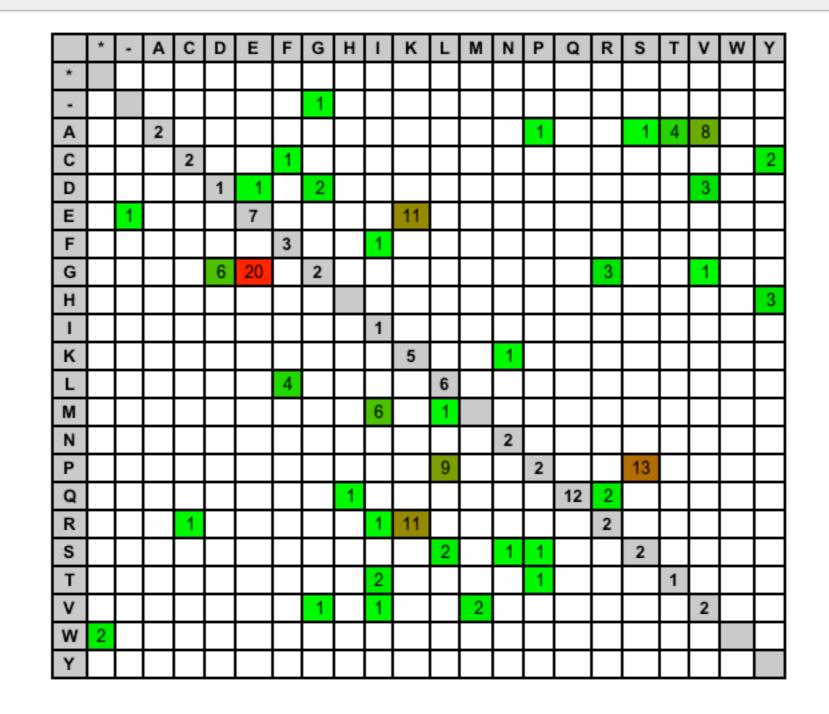
Note: This Ts/Tv ratio is a 'raw' ratio. Some people prefer to use a ratio of rates, not observed events. In that case, you need to multiply by 2.0 (since there are twice as many possible transitions than transversions, E[Ts/Tv] ratio is twice the ratio of events).

Transitions	391
Transversions	142
Ts/Tv ratio	2.7535

All variants:

Sample : Total Transitions : 391 391 Transversions : 142 142 Ts/Tv : 2.754 2.754

Only known variants (i.e. the ones having a non-empty ID field):


No results available (empty input?)

Variant annotation (snpEff)

Amino acid changes

How to read this table:

- Rows are reference amino acids and columns are changed amino acids. E.g. Row 'A' column 'E' indicates how many 'A' amino acids have been replaced by 'E' amino acids.
- Red background colors indicate that more changes happened (heat-map).
- Diagonals are indicated using grey background color
- WARNING: This table may include different translation codon tables (e.g. mamalian DNA and mitochondrial DNA).

4) Support (usegalaxy.org/cloudmap)

Galaxy	Analyze Data Workflow Shared Data - Visualization - Cloud - Help - User -
Published Pages gm2123 CloudMap	
CloudMap Materials:	
User guides	
	apping workflow using the ot266 proof of principle dataset from the CloudMap paper:
https://vimeo.com/51082571	
Note: In the interest of allowing users to quickly run a H will not exactly match the ot266 figures in the CloudMap	awaiian Variant Mapping example, the ot266 FASTQ sample dataset is a small subset of all the ot266 reads. For this reason, plots and variant lists generated by the exam
Video user guides demonstrating all workflows:	
Coming soon	
PDF user guide:	
Dataset 'CloudMap_Userquide_11-28-2012_large.pdf'	
Dataset 'CloudMap_Userquide_11-28-2012_small.pdf'	
Workflows	
Hawaiian Variant Mapping workflow using the ot266 pro	of of principle dataset from the CloudMap paper (workflow can be used for any strain that has been crossed to a mapping strain e.g. Hawaiian):
Workflow 'CloudMap Hawaiian Variant Mapping with WGS and Variant Call	ing workflow'
Workflow 'CloudMap Hawaiian Variant Mapping with WGS and Variant Call	ing workflow (no candidate genes)"
Variant Discovery Mapping workflow:	
Coming soon	
	terozygous and homozygous background variants to subtract):
Workflow 'CloudMap EMS Variant Density Mapping workflow (takes VCF of	
	terozygous and homozygous variants to subtract from the primary sample to be mapped using EMS variant density)
	ids from a second sample, creates VCF, and subtracts those variants from the primary sample):
Coming soon	
Unmapped mutant workflow (no variants from other stra	ins to subtract):
Workflow 'CloudMap Unmapped Mutant workflow'	
Unmapped mutant workflow (allows for subtraction of va Workflow 'CloudMap Unmapped Mutant workflow (w/ subtraction of other	
Uncovered Region Subtraction workflow (allows for subt Workflow 'Cloudmap Uncovered Region Subtraction workflow'	raction of uncovered regions from other strains)
Subtract variants workflow (1 set of candidates, 2 sets of	f variants to subtract)
Workflow 'CloudMap Subtract Variants workflow (1 set candidates, 2 sets o	
TO KINE COMMEND PROTECT DURING NOT KINE (2 St. CENSION, 2 St.	
Shared Histories	
Shared history from the ot266 proof of principle dataset	from the CloudMap paper (all the files generated from the workflow above):

Shared history from the ot266 proof of principle dataset from the CloudMap paper (all the files generated from the workflow above): <u>History 'CloudMap ot266 Proof of Principle (with hidden data)'</u> <u>History 'CloudMap ot266 Proof of Principle (with unhidden data)'</u>

CloudMap Tools & Data

CloudMap tools can be downloaded from the Galaxy toolshed. They can be run in a local Galaxy install, or run as standalone Python scripts on a computer that has Python and R installed, or in Galaxy on Amazon's Elastic Compute (EC2) cloud service:

http://toolshed.q2.bx.psu.edu/

Shared data library (for use case examples from the paper and user guide and also contains key references files): Go to <u>http://usegalaxy.org/library</u> and search for CloudMap

Alternative ways to run Galaxy & CloudMap

Galaxy and CloudMap on Amazon's Elastic Compute Cloud (EC2): http://wiki.g2.bx.psu.edu/CloudMan Running Galaxy locally:

4) Support (hobertlab.org/cloudmap)

Hobert Lab	People	Research	Publications	Methods & Protocols	Links	Location
[edit]						

CloudMap

CloudMap: A Cloud-Based Pipeline for Analysis of Mutant Genome Sequences.

Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O.

Genetics. 2012 Dec; 192(4): 1249-69. doi: 10.1534/genetics.112.144204. Epub 2012 Oct 10.

Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032.

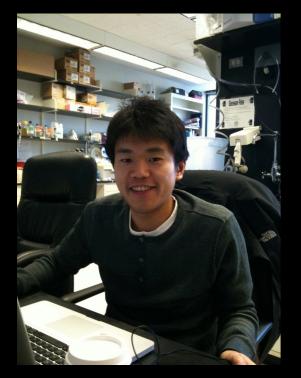
Abstract

Whole genome sequencing (WGS) allows researchers to pinpoint genetic differences between individuals and significantly shortcuts the costly and time-consuming part of forward genetic analysis in model organism systems. Currently, the most effort-intensive part of WGS is the bioinformatic analysis of the relatively short reads generated by second generation sequencing platforms. We describe here a novel, easily accessible and cloud-based pipeline, called CloudMap, which greatly simplifies the analysis of mutant genome sequences. Available on the Galaxy web platform, CloudMap requires no software installation when run on the cloud, but it can also be run locally or via Amazon's Elastic Compute Cloud (EC2) service. CloudMap uses a series of predefined workflows to pinpoint sequence variations in animal genomes, such as those of premutagenized and mutagenized Caenorhabditis elegans strains. In combination with a variant-based mapping procedure, CloudMap allows users to sharply define genetic map intervals graphically and to retrieve very short lists of candidate variants with a few simple clicks. Automated workflows and extensive video user guides are available to detail the individual analysis steps performed (<u>http://usegalaxy.org/cloudmap</u>). We demonstrate the utility ofCloudMap for WGS analysis of C. elegans and Arabidopsis genomes and describe how other organisms (e.g., Zebrafish and Drosophila) can easily be accommodated by this software platform. To accommodate rapid analysis of many mutants from large-scale genetic screens, CloudMap contains an in silico complementation testing tool that allows users to rapidly identify instances where multiple alleles of the same gene are present in the mutant collection. Lastly, we describe the application of a novel mapping/WGS method ("Variant Discovery Mapping") that does not rely on a defined polymorphic mapping strain, and we integrate the application of this method into CloudMap tools and documentation are continually updated at <u>http://usegalaxy.org/cloudmap</u>.

Video User Guides

Galaxy Install steps and CloudMap Dependencies

Frequently Asked Questions (FAQs):


<u>CloudMap Questions:</u> <u>How much coverage do I need for this to work?</u> Why does my annotated variant not correspond to the same position in Wormbase? Install locally

Install on Amazon


Instructions: hobertlab.org/cloudmap

Acknowledgements

Danny S. Park

Richard Poole

Daniel Blankenberg (& Galaxy Team)

Oliver Hobert

http://usegalaxy.org/cloudmap

http://hobertlab.org/cloudmap

<u>gm2123@columbia.edu</u> - sign up to receive email updates